Worksheet 9
EEL 4705
Emerging Logic Devices – K-Map based Mapping
(To convert AND/OR Logic to Majority Logic)

Question 1: Making use of the Algorithm and the K-Maps depicted, reduce the following function into a Majority Logic function. Each of the three functions \(f, f_1, f_2, f_3 \) will be only from the Library of K-Map patterns depicted above.

- \(n = a\overline{b}c + \overline{a} b \overline{c} + \overline{a} \overline{b}c + ab.c \)

 Function needs to be broken in the form \(n = \text{Maj}(f_1, f_2, f_3) \)

 Find an admissible pattern for \(f_1 \) from the above library.

 For finding \(f_2 \), set \(\Psi_1 \) is obtained as follows: if a minterm of \(n \) is not a minterm of \(f_1 \), add this minterm to \(\Psi_1 \).

 Similarly, for finding \(f_2 \), set \(\Psi_0 \) is obtained as follows: if a maxterm of \(n \) is not a maxterm of \(f_1 \), add this maxterm to \(\Psi_0 \).

 A suitable pattern for \(f_2 \) is then determined using new \(\Psi_1 \) and \(\Psi_0 \) (from the above library).

 Furthermore, to determine \(f_3 \), \(\Psi_1 \) and \(\Psi_0 \) are updated again as follows: if a minterm (maxterm) of node \(n \) is not a minterm (maxterm) of both \(f_1 \) and \(f_2 \), add this minterm (maxterm) to \(\Psi_1 \) (\(\Psi_0 \)).
Question 2: Perform the AND/OR mapping of the same expression $n = \overline{a} \cdot b \cdot \overline{c} + a \cdot \overline{b} \cdot c + \overline{a} \cdot \overline{b} \cdot \overline{c} + a \cdot b \cdot c$

Then see the difference in the number of majority gates used for K-map method and AND/OR method.